1

Is there an easy way of showing (1)

(1)

$$8\cos^3(12^o)-6\cos(12^o)=\phi$$

with out substituting into the equation?

$8\left(\frac{1}{8}\left[\sqrt{6(5+\sqrt5)}+\sqrt5-1\right]\right)^3-6\cdot\frac{1}{8}\left[\sqrt{6(5+\sqrt5)}+\sqrt5-1\right]=\phi$


Trigonometric constant expressed in real radicals-Wikipedia.

$\cos(12^o)=\frac{1}{8}\left[\sqrt{6(5+\sqrt5)}+\sqrt5-1\right]$

$\phi=\frac{1+\sqrt5}{2}$


1 Answers1

4

Recall that $$\cos 3x=4\cos^3 x- 3\cos x$$ $$\implies 2(4\cos^3 12^{\circ}-3\cos 12^{\circ})=2\cos36^\circ$$ Using $$\cos 36^\circ=\frac{1+\sqrt{5}}4$$ We get the that $$8\cos^3 12^{\circ}-6\cos 12^{\circ}=\frac{1+\sqrt{5}}2=\phi$$

Nikunj
  • 6,160
  • 1
    For the value of $\cos 36^\circ$, see https://en.wikipedia.org/wiki/Pentagon#.E2.80.A0_Proof_that_cos_36.C2.B0_.3D. – lhf May 21 '16 at 12:48