2

I've been stuck on this one problem for 3 days now, I don't know how to proceed. Any help would be appreciated.

The problem is asking for the $$\lim_{x\to\infty} (\sqrt{x^2+8x}-\sqrt{x^2+7x}) $$

Every time I attempt this problem, I can never get rid of infinity in the numerator without making the denominator zero. How can I do this problem?

3 Answers3

4

Hint: $\sqrt{x^2+8x}-\sqrt{x^2+7x}={({\sqrt{x^2+8x}-\sqrt{x^2+7x})(\sqrt{x^2+8x}+\sqrt{x^2+7x})}\over{\sqrt{x^2+8x}+\sqrt{x^2+7x}}}={x\over {\mid x\mid\sqrt{1+8/x}+\mid x\mid \sqrt{1+7/x}}}$

${1\over {\sqrt{1+8/x}+ \sqrt{1+7/x}}}$ if $x>0$ and

${-1\over {\sqrt{1+8/x}+ \sqrt{1+7/x}}}$ if $x<0$

1

You want $\lim_{x\to\infty} (\sqrt{x^2+8x}-\sqrt{x^2+7x}) $.

For reals $a$ and $b$,

$\begin{array}\\ \sqrt{x^2+ax}-\sqrt{x^2+bx} &=(\sqrt{x^2+ax}-\sqrt{x^2+bx})\dfrac{\sqrt{x^2+ax}+\sqrt{x^2+bx}}{\sqrt{x^2+ax}+\sqrt{x^2+bx}}\\ &=\dfrac{(\sqrt{x^2+ax}-\sqrt{x^2+bx})(\sqrt{x^2+ax}+\sqrt{x^2+bx})}{\sqrt{x^2+ax}+\sqrt{x^2+bx}}\\ &=\dfrac{(x^2+ax)-(x^2+bx)}{\sqrt{x^2+ax}+\sqrt{x^2+bx}}\\ &=\dfrac{ax-bx}{\sqrt{x^2+ax}+\sqrt{x^2+bx}}\\ &=\dfrac{x(a-b)}{\sqrt{x^2+ax}+\sqrt{x^2+bx}}\\ &=\dfrac{a-b}{\sqrt{1+a/x}+\sqrt{1+b/x}}\\ &\to \dfrac{a-b}{2} \text{ as } x \to \infty\\ \end{array} $

The result is the same if the expression is $\sqrt{x^2+ax+c}-\sqrt{x^2+bx+d} $.

marty cohen
  • 107,799
1

Another way to do it.

Considering that $x\to\infty$ $$\sqrt{x^2+8x}-\sqrt{x^2+7x}=x\left(\sqrt{1+\frac 8x}-\sqrt{1+\frac 7x} \right)$$ Now, using Taylor for small $y$ $$\sqrt{1+y}=1+\frac{y}{2}-\frac{y^2}{8}+O\left(y^3\right)$$ make $y=\frac 8x$ in the first radical and $y=\frac 7x$ in the second radical to get $$\sqrt{x^2+8x}-\sqrt{x^2+7x}=x\left(\left(1+\frac{4}{x}-\frac{8}{x^2}+O\left(\frac{1}{x^3}\right) \right)-\left(1+\frac{7}{2 x}-\frac{49}{8 x^2}+O\left(\frac{1}{x^3}\right)\right)\right)$$ After simplification $$\sqrt{x^2+8x}-\sqrt{x^2+7x}=\frac{1}{2}-\frac{15}{8 x}+O\left(\frac{1}{x^2}\right)$$ which shows the limit and how it is approached.

Edit

Making the problem more general as Marty Cohen did in his answer, doing the same, we should get

$$\sqrt{x^2+ax+c}-\sqrt{x^2+bx+d}=\frac{a-b}{2}+\frac{-a^2+4 b+c^2-4 d}{8 x}+O\left(\frac{1}{x^2}\right)$$

marwalix
  • 16,773
  • You mean ${a-b\over 2}$? I edited. I think that for any limit one should try to go through the asymptotic series to see the way the limit is approached – marwalix May 29 '16 at 04:33
  • 1
    @marwalix. I thought I typed that ... but I certainly missed something ! Thanks for editing. Cheers. – Claude Leibovici May 29 '16 at 04:39