$x,y,z >0$, prove $$\frac{x^x}{x+y}+\frac{y^y}{y+z}+\frac{z^z}{z+x} \geqslant \frac32$$
I have a solution for this beautiful and elegant inequality. I am posting this inequality to share and see other solutions from everyone on MSE.
Since some of you asked for my solution, I used the following estimations $$x^x \geqslant \frac12 \left(x^2+1 \right)$$
Proving rest of this inequality is very simple.
Method 1: $$\sum_{cyc}\frac{x^x}{x+y} \geqslant \frac12\sum_{cyc}\frac{x^2+1}{x+y}\geqslant \frac12 \left( \frac{(x+y+z)^2}{2(x+y+z)}+\sum_{cyc}\frac{1}{x+y} \right) \geqslant \frac12 \sum_{cyc}\left(\frac{x+y}{4}+\frac{1}{x+y} \right) \geqslant \frac12 \sum_{cyc} 2 \cdot\sqrt{\frac{x+y}{4}\cdot \frac{1}{x+y}} \geqslant \frac32$$
Method 2:
$$\sum_{cyc} \frac{x^x}{x+y} \geqslant \frac12 \sum_{cyc}\frac{x^2+1}{x+y} \geqslant \frac32 \sqrt[3]{\frac{(x^2+1)(y^2+1)(z^2+1)}{(x+y)(y+z)(z+x)}}\geqslant \frac32$$
It is because C-S yields $$(x^2+1)(y^2+1) \geqslant (x+y)^2$$
so $$\frac{(x^2+1)(y^2+1)(z^2+1)}{(x+y)(y+z)(z+x)} \geqslant 1$$
Method 3:
Notice that $$\sum_{cyc} \frac{x^2+1}{x+y}=\sum_{cyc} \frac{y^2+1}{x+y}$$ Hence $$\sum_{cyc}\frac{x^x}{x+y} \geqslant \frac12 \sum_{cyc}\frac{x^2+1}{x+y}=\frac14\sum_{cyc} \frac{x^2+y^2+2}{x+y} \geqslant\frac14\sum_{cyc}\frac{\frac{(x+y)^2}{2}+2}{x+y}$$$$=\frac14 \sum_{cyc} \left(\frac{x+y}{2}+\frac{2}{x+y} \right) \geqslant \frac14 \sum_{cyc}2 =\frac32$$
Can you find a different solution that does not employ the estimation $x^x \geqslant \frac12(x^2+1)$ ?
Update 1
The solution of user260822 is not correct. This is not a Nesbitt's inequality. We have $$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x} > 1 $$ (not $\frac32$)
Update 2
Another similar question I posted a few weeks back
Unconventional Inequality $ \frac{x^x}{|x-y|}+\frac{y^y}{|y-z|}+\frac{z^z}{|z-x|} > \frac72$
Please help. Thank you