The rotation matrix about y axis should look like
$$\left[ \begin{array}{ccc} \cos\frac{\pi}{2} & 0 &\sin\frac{\pi}{2}\\ 0 & 1 & 0\\ -\sin\frac{\pi}{2} & 0 &\cos\frac{\pi}{2}\\ \end{array} \right] = \left[ \begin{array}{ccc} 0 & 0 &1\\ 0 & 1 & 0\\ -1& 0 &0\\ \end{array} \right] $$
Now, I pictured this rotation, and it should look like rotation about y axis, counterclockwise
I drew $(1,1,1)$ vector in original coordinate system, and in the new coordinate system, the vector should be $(-1,1,1)$

BUT! the matrix calculation gives otherwise.
$$ \left[ \begin{array}{ccc} 0 & 0 &1\\ 0 & 1 & 0\\ -1& 0 &0\\ \end{array} \right] \left[ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right] =\left[ \begin{array}{c} 1\\ 1\\ -1 \end{array} \right] $$
Am I missing something?
Okay, it seems like I should rotate vector instead of coordinate system.
Then, How can you explain rotation about z axis?
The rotation matrix is $$ \left[ \begin{array}{ccc} \cos\frac{\pi}{2} &\sin\frac{\pi}{2} & 0\\ -\sin\frac{\pi}{2} &\cos\frac{\pi}{2} & 0\\ 0 & 0 & 1 \end{array} \right] = \left[ \begin{array}{ccc} 0 & 1 &0\\ -1 & 0 & 0\\ 0& 0 &1\\ \end{array} \right] $$
But... calculation is correct. $$ \left[ \begin{array}{ccc} 0 & 1 &0\\ -1 & 0 & 0\\ 0& 0 &1\\ \end{array} \right] \left[ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right] =\left[ \begin{array}{c} 1\\ -1\\ 1 \end{array} \right] $$
IF you rotate the vector, then in the picture, it should be $(-1,1,1)$
Oh. god.... I think I am looking at the wrong source.
My book tells
well, clearly, googling gives me
I think I solved my case. Thank you all.






clockwise. – Bernard Jun 01 '16 at 15:52