I would like to suggest another proof inspired by marlu's proof in direct product commutes with tensor product?. In the case of a surjective system $\{M_i\}$ and a flat finitely presented $A$-module $N$, we can relax the requirement that the members $M_i$ in the inverse system have to be of finite length in order for $(-)\otimes_AN$ to commute with the inverse limit. Alternatively, if we assume that $\{M_i\}$ is a surjective system of flat $A$-modules, then we can relax the flatness condition on $N$, as well. Then it suffices if $N$ is finitely presented over $A$. In the following, I consider both situations separately (Claim 1 and Claim 2).
Claim 1: Let A be a commutative ring. Let $\{M_i\}$ be a surjective system of $A$-modules. Let further $N$ be a finitely presented and flat $A$-module. Then, there is an isomorphism of $A$-modules
$$(\lim_{\leftarrow i}M_i)\otimes_A N\cong\lim_{\leftarrow i}(M_i\otimes_AN).$$
Proof: Since $N$ is finitely presented, by definition, there are integers $m, n\geq1$ together with two surjective maps of $A$-modules
$$\varphi: A^n\twoheadrightarrow N$$
and
$$\psi:A^m\twoheadrightarrow\ker\varphi.$$
Both maps give rise to the short exact sequence of $A$-modules
$$0\to A^m/\ker\psi\hookrightarrow A^n\twoheadrightarrow N\to0.~~~(1)$$
Since $A^n$ is free, hence flat over $A$ and $N$ is by assumption flat over $A$, the $A$-module $\ker\varphi\cong A^m/\ker\psi$ is flat over $A$, too. This means that $$\mathrm{Tor}^k(N, M)=\mathrm{Tor}^k(A^n, M)=\mathrm{Tor}^k(\ker\varphi, M)=0$$ for every $k\geq1$ and every $A$-module $M$. Hence, from the $\mathrm{Tor}$-long exact sequence, we deduce that for each $i$, there is a short exact sequence of $A$-modules
$$0\to M_i\otimes_AA^m/\ker\psi\to M_i\otimes_AA^n\to M_i\otimes_AN\to0.$$
The right exactness of the functor $(-)\otimes_AA^m/\ker\psi$ implies that $\{M_i\otimes_AA^m/\ker\psi\}$ is a surjective system, too. Hence, by Proposition $10.2$ in Atiyah-MacDonald's book Introduction to Commutative Algebra, the sequence of $A$-modules
$$0\to\lim_{\leftarrow i}(M_i\otimes_A\frac{A^m}{\ker\psi})\to\lim_{\leftarrow i}(M_i\otimes_AA^n)\to\lim_{\leftarrow i}(M_i\otimes_AN)\to0~~~(2)$$
is exact, too. For every $i$, there is a canonical isomorphism of quotient $A$-modules:
$$\frac{M_i}{\{0\}}\otimes_A\frac{A^m}{\ker\psi}\cong \frac{M_i^{\oplus m}}{M_i\otimes\ker\psi}.$$
As the inverse system $\{M_i\otimes_A\ker\psi\}$ is surjective, Proposition $10.2$ in Atiyah-MacDonald’s book implies the following isomorphism:
$$\lim_{\leftarrow i}(\frac{M_i^{\oplus m}}{M_i\otimes\ker\psi})\cong\frac{\lim_{\leftarrow i}(M_i^{\oplus m})}{\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)}.$$
Thus, we can write short exact sequence $(2)$ in the form
$$0\to\frac{\lim_{\leftarrow i}(M_i^{\oplus m})}{\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)}\to\lim_{\leftarrow i}(M_i^{\oplus n})\to\lim_{\leftarrow i}(M_i\otimes_AN)\to0.~~~(3)$$
Applying the right exact functor $\lim_{\leftarrow i}(M_i)\otimes_A(-)$ on the short exact sequence $(1)$ yields the exact sequence
$$\frac{(\lim_{\leftarrow i}M_i)^{\oplus m}}{(\lim_{\leftarrow i}M_i)\otimes_A\ker\psi} \to(\lim_{\leftarrow i}M_i)^{\oplus n}\to (\lim_{\leftarrow i}M_i)\otimes_AN\to0~~~(4)$$
The canonical map
$$(\lim_{\leftarrow i}M_i)^{\oplus m}\to\lim_{\leftarrow i}(M_i^{\oplus m})~~~(5)$$
is an isomorphism by the fact that finite direct sums are limits and limits always commute with other limits. At the same time, that isomorphism maps the subspace $\lim_{\leftarrow i}(M_i)\otimes_A\ker\psi$ to $\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)$. Hence, the canonical map $(5)$ descends to a surjective map
$$\frac{(\lim_{\leftarrow i}M_i)^{\oplus m}}{\lim_{\leftarrow i}(M_i)\otimes_A\ker\psi}\twoheadrightarrow\frac{\lim_{\leftarrow i}(M_i^{\oplus m})}{\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)}~~~(6)$$
Now, both exact sequences $(3)$ and $(4)$ fit in the following commutative diagram
$\require{AMScd}$
\begin{CD}
\frac{(\lim_{\leftarrow i}M_i)^{\oplus m}}{\lim_{\leftarrow i}(M_i)\otimes_A\ker\psi} @>>> (\lim_{\leftarrow i}M_i)^{\oplus n} @>>> (\lim_{\leftarrow i}M_i)\otimes_AN@>>>0@>>>0 \\
@VVV @VVV @VVV @VVV @VVV \\
\frac{\lim_{\leftarrow i}(M_i^{\oplus m})}{\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)} @>>> \lim_{\leftarrow i}(M_i^{\oplus n}) @>>> \lim_{\leftarrow i}(M_i\otimes_AN)@>>>0@>>>0.
\end{CD}
The top and bottom rows are exact. The vertical arrows are the canonical maps. The first vertical arrow is the surjective map $(6)$. The second one is an isomorphisms, as already explained, by the fact that inverse limits commute with finite direct sums. The last two morphsims $0\to 0$ are trivially isomorphisms. Then, a direct application of the Five Lemma implies that $(\lim_{\leftarrow i}M_i)\otimes_A N\cong\lim_{\leftarrow i}(M_i\otimes_AN)$. QED
Claim 2: Let A be a commutative ring. Let $\{M_i\}$ be a surjective system of flat $A$-modules. Let further $N$ be a finitely presented $A$-module. Then, there is an isomorphism of $A$-modules
$$(\lim_{\leftarrow i}M_i)\otimes_A N\cong\lim_{\leftarrow i}(M_i\otimes_AN).$$
Proof: Since $N$ is finitely presented, by definition, there are integers $m, n\geq1$ together with two surjective maps of $A$-modules
$$\varphi: A^n\twoheadrightarrow N$$
and
$$\psi:A^m\twoheadrightarrow\ker\varphi.$$
Both maps give rise to the short exact sequence of $A$-modules
$$0\to A^m/\ker\psi\hookrightarrow A^n\twoheadrightarrow N\to0.~~~(1)$$
Since by definition, every $A$-module $M_i$ is flat, for each $i$, there is a short exact sequence of $A$-modules
$$0\to M_i\otimes_AA^m/\ker\psi\to M_i\otimes_AA^n\to M_i\otimes_AN\to0.$$
The right exactness of the functor $(-)\otimes_AA^m/\ker\psi$ implies that $\{M_i\otimes_AA^m/\ker\psi\}$ is a surjective system, too. Hence, by Proposition $10.2$ in Atiyah-MacDonald's book Introduction to Commutative Algebra, the sequence of $A$-modules
$$0\to\lim_{\leftarrow i}(M_i\otimes_A\frac{A^m}{\ker\psi})\to\lim_{\leftarrow i}(M_i\otimes_AA^n)\to\lim_{\leftarrow i}(M_i\otimes_AN)\to0~~~(2)$$
is exact, too. For every $i$, there is a canonical isomorphism of quotient $A$-modules:
$$\frac{M_i}{\{0\}}\otimes_A\frac{A^m}{\ker\psi}\cong \frac{M_i^{\oplus m}}{M_i\otimes\ker\psi}.$$
As the inverse system $\{M_i\otimes_A\ker\psi\}$ is surjective, Proposition $10.2$ in Atiyah-MacDonald’s book implies the following isomorphism:
$$\lim_{\leftarrow i}(\frac{M_i^{\oplus m}}{M_i\otimes\ker\psi})\cong\frac{\lim_{\leftarrow i}(M_i^{\oplus m})}{\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)}.$$
Thus, we can write short exact sequence $(2)$ in the form
$$0\to\frac{\lim_{\leftarrow i}(M_i^{\oplus m})}{\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)}\to\lim_{\leftarrow i}(M_i^{\oplus n})\to\lim_{\leftarrow i}(M_i\otimes_AN)\to0.~~~(3)$$
Applying the right exact functor $\lim_{\leftarrow i}(M_i)\otimes_A(-)$ on the short exact sequence $(1)$ yields the exact sequence
$$\frac{(\lim_{\leftarrow i}M_i)^{\oplus m}}{(\lim_{\leftarrow i}M_i)\otimes_A\ker\psi} \to(\lim_{\leftarrow i}M_i)^{\oplus n}\to (\lim_{\leftarrow i}M_i)\otimes_AN\to0~~~(4)$$
The canonical map
$$(\lim_{\leftarrow i}M_i)^{\oplus m}\to\lim_{\leftarrow i}(M_i^{\oplus m})~~~(5)$$
is an isomorphism by the fact that finite direct sums are limits and limits always commute with other limits. At the same time, that isomorphism maps the subspace $\lim_{\leftarrow i}(M_i)\otimes_A\ker\psi$ to $\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)$. Hence, the canonical map $(5)$ descends to a surjective map
$$\frac{(\lim_{\leftarrow i}M_i)^{\oplus m}}{\lim_{\leftarrow i}(M_i)\otimes_A\ker\psi}\twoheadrightarrow\frac{\lim_{\leftarrow i}(M_i^{\oplus m})}{\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)}~~~(6)$$
Now, both exact sequences $(3)$ and $(4)$ fit in the following commutative diagram
$\require{AMScd}$
\begin{CD}
\frac{(\lim_{\leftarrow i}M_i)^{\oplus m}}{\lim_{\leftarrow i}(M_i)\otimes_A\ker\psi} @>>> (\lim_{\leftarrow i}M_i)^{\oplus n} @>>> (\lim_{\leftarrow i}M_i)\otimes_AN@>>>0@>>>0 \\
@VVV @VVV @VVV @VVV @VVV \\
\frac{\lim_{\leftarrow i}(M_i^{\oplus m})}{\lim_{\leftarrow i}(M_i\otimes_A\ker\psi)} @>>> \lim_{\leftarrow i}(M_i^{\oplus n}) @>>> \lim_{\leftarrow i}(M_i\otimes_AN)@>>>0@>>>0.
\end{CD}
The top and bottom rows are exact. The vertical arrows are the canonical maps. The first vertical arrow is the surjective map $(6)$. The second one is an isomorphisms, as already explained, by the fact that inverse limits commute with finite direct sums. The last two morphsims $0\to 0$ are trivially isomorphisms. Then, a direct application of the Five Lemma implies that $(\lim_{\leftarrow i}M_i)\otimes_A N\cong\lim_{\leftarrow i}(M_i\otimes_AN)$. QED