Integrate
$$I=\int_{0}^{1}{\sqrt{1-x^4}\over 1+x^4}dx={\pi\over 4}$$
Substitution $x=\sqrt{\tan(u)}\rightarrow dx={\sec^2(u)\over 2\sqrt{\tan(u)}}du$
$x=1\rightarrow u={\pi\over 4}$
$x=0\rightarrow u=0$
$$I={1\over 2}\int_{0}^{{\pi\over 4}}{\sqrt{1-\tan^2(u)}\over 1+\tan^2(u)}\cdot {\sec^2(u)\over \sqrt{\tan(u)}}du$$
$$I={1\over 2}\int_{0}^{{\pi\over 4}}{\sqrt{1-\tan^2(u)\over \tan(u)}}du$$
$$I={1\over 2}\int_{0}^{{\pi\over 4}}{\sqrt{\cot(u)-\tan(u)}}du$$ Recall
$$\cot(u)-\tan(u)={\cos^2(u)-\sin^2(u)\over \sin(u)\cos(u)}=2\cot(2u)$$
Substitute back into I
$$I={1\over 2}\int_{0}^{{\pi\over 4}}{\sqrt{2\cot(2u)}}du$$
$$I={\sqrt2\over 2}\int_{0}^{{\pi\over 4}}{\sqrt{\cot(2u)}}du$$
Well I know that $$\int{\cos(2u)\over\sin(2u)}du={1\over 2}\ln(\sin(2u))+C$$ but
$$\int\sqrt{{\cos(2u)\over\sin(2u)}}du$$ I have not idea, so can anyone please give a hand? Thank.