Let's compute the general case:
$$I=\int_0^\infty \frac{a\cdot x^s\ln^n x}{(x+a)^2+b^2}~dx,~~~~~~a\ge0,b\ge0\tag{1}$$
Define
$$F=\int_0^\infty \frac{a\cdot x^s}{(x+a)^2+b^2}~dx,~~~~~-1<s<1$$
hence
$$I=\frac{d^nF}{ds^n}~~~~~\text{and}~~~~~\int_0^\infty \frac{a\ln^n x}{(x+a)^2+b^2}dx=\lim_{s\to0}\frac{d^nF}{ds^n}\tag{2}$$
Next, use the keyhole contour to compute $F$

Choose the branch cut along the positive x-axis, where $\arg(z)\in [0,2\pi)$. The integral on $C_2$ vanishes when $s<1$, and the integral on $C_4$ vanishes when $s>-1$. We have two simple poles at $z_1=-a+bi, z_2=-a-bi$
$$\int_{C_1}+\int_{C_2}+\int_{C_3}+\int_{C_4}f(z)dz=2\pi i\sum_{k=1}^2 \text{Res}(z_k)$$
where $\displaystyle f(z)=\frac{a\cdot z^s}{(z+a)^2+b^2}$, we get
$$\left(1-e^{2\pi s i}\right)F=2\pi i\left( \frac{(a^2+b^2)^{s/2}e^{i\theta s}}{2i} +\frac{(a^2+b^2)^{s/2}e^{i(2\pi-\theta) s}}{-2i} \right)$$
where $\displaystyle\theta=\pi-\arctan\left(\frac ba\right)$, simplify and get
$$F=\frac{\pi(a^2+b^2)^{s/2}\sin\left(s\cdot \arctan\left(\frac ba\right) \right)}{\sin(\pi s)}\tag{3}$$
Now, from (2), we get
$$\boxed{\int_0^\infty \frac{a\ln^n x}{(x+a)^2+b^2}~dx=\lim_{\color{red}s\to0}\frac{d^n}{d\color{red}s^n}\left(\frac{\pi(a^2+b^2)^{\color{red}s/2}\cdot\sin\left(\color{red}s\cdot \arctan\left(\frac ba\right) \right)}{\sin(\pi \color{red}s)}\right)}\tag{4}$$
Here are some results generated by (4)
$$\begin{align} n&=0,~~ \int_0^\infty \frac{a}{(x+a)^2+b^2}~dx=\arctan\left(\frac ba\right)\\
\\
n&=1,~~ \int_0^\infty \frac{a \ln x}{(x+a)^2+b^2}~dx=\frac12\arctan\left(\frac ba\right)\ln(a^2+b^2)\\
\\
n&=2,~~ \int_0^\infty \frac{a \ln^2x}{(x+a)^2+b^2}~dx=\frac1{12}\arctan\left(\frac ba\right)\left(4\pi^2-4\arctan^2\left(\frac ba\right)+3\ln^2(a^2+b^2)\right)\\
\\
n&=3,\\
\\
&\int_0^\infty \frac{a \ln^3x}{(x+a)^2+b^2}dx=\frac1{8}\arctan\left(\frac ba\right)\ln(a^2+b^2)\left(4\pi^2-4\arctan^2\left(\frac ba\right)+\ln^2(a^2+b^2)\right)\\
\end{align}$$