Let $\phi:\mathbb{R} \rightarrow \mathbb{R}$ be a ring homomorphism onto. Prove or disprove: $\phi(r)=r$ for all $r\in \mathbb{R}.$
Attempt: I believe it is true! Since $\phi(1)=\phi(1\cdot 1)=\phi(1)^2$ we get $\phi(1)=1$, since $\phi$ is onto. Then quite easily we get $\phi(m)=m$ for $m\in \mathbb{Z}$ and $\phi(q)=q$ for $q\in \mathbb{Q}$. How do we go on from this point, to conclude for $\mathbb{R}$?