Question : -
$$\lim_{x \to 0} \frac{\sin(a + b)x + \sin(a - b)x + \sin(2ax)}{\cos^2 bx - \cos^2 ax}$$
My attempt :-
$$\lim_{x \to 0} \frac{2* \sin ax * \cos bx + 2*\sin ax * \cos (ax)}{(\cos bx - \cos ax)*(\cos bx +\cos ax)}$$ $$\lim_{x \to 0} \frac{2* \sin ax * (\cos bx + \cos (ax))}{(\cos bx - \cos ax)*(\cos bx +\cos ax)}$$ $$\lim_{x \to 0} \frac{2* \sin ax}{(\cos bx - \cos ax)}$$ $$\lim_{x \to 0} \frac{2* \sin ax}{(-2 * \sin {bx-ax\over2} * \sin {bx+ax\over2})}$$ $$-\lim_{x \to 0} \frac{{\sin ax \over ax} * {ax }}{\frac{\sin {bx-ax\over2} * \sin {bx+ax\over2}}{ {bx+ax\over2} * {bx-ax\over2}} * {bx+ax\over2} * {bx-ax\over2}}$$ $$-\lim_{x \to 0} \frac{ax}{{bx+ax\over2} * {bx-ax\over2}}$$ $$-\lim_{x \to 0} \frac{ax}{{(bx)^2 - (ax)^2\over 4}}$$ $$\lim_{x \to 0} \frac{4 * ax}{(ax)^2 -(bx)^2}$$ $$\lim_{x \to 0} \frac{4 * a}{x (a^2 - b^2)}$$
There i hit the dead end, i can't do anything now.
Can anyone please tell me what i have done incorrect here ?
Sorry but i can't confirm the legitimacy of the question, i just found it on net and there is no answer given.