Find the sum of following series:
$S=\frac{1}{5}-\frac{2}{5^2}+\frac{3}{5^3}-\frac{4}{5^4}+....$ upto infinite terms
Could someone give me slight hint to solve this question?
Find the sum of following series:
$S=\frac{1}{5}-\frac{2}{5^2}+\frac{3}{5^3}-\frac{4}{5^4}+....$ upto infinite terms
Could someone give me slight hint to solve this question?
$$S=\frac 15-\frac2{5^2}+\frac 3{5^3}-\dots\tag 1$$ and $$\frac S5=\frac 1{5^2}-\frac2{5^3}+\frac 3{5^4}-\dots\tag 2$$
Now, $(1)+(2)$ yields $$S+\frac S5=\frac 15-\frac1{5^2}+\frac1{5^3}+\dots\\\implies \frac{6S}5=\frac 15-\frac1{5^2}+\frac1{5^3}+\dots=\frac 16\\\implies S=\frac5{36}.$$
Hint. One may recall (see this) that $$ \sum_{n=1}^\infty nx^n=\frac{x}{(1-x)^2},\quad |x|<1. $$ Then apply it with $x=-\dfrac15$.