The Taylor expansion of the function $f(x,y)$ is:
\begin{equation} f(x+u,y+v) \approx f(x,y) + u \frac{\partial f (x,y)}{\partial x}+v \frac{\partial f (x,y)}{\partial y} + uv \frac{\partial^2 f (x,y)}{\partial x \partial y} \end{equation}
When $f=(x,y,z)$ is the following true?
$$\begin{align} f(x+u,y+v,z+w) \approx f(x,y,z) &+ u \frac{\partial f (x,y,z)}{\partial x}+v \frac{\partial f (x,y,z)}{\partial y} + w \frac{\partial f (x,y,z)}{\partial z} \\ &+uv \frac{\partial^2 f (x,y,z)}{\partial x \partial y} + vw \frac{\partial^2 f (x,y,z)}{\partial y \partial z}+ uw \frac{\partial^2 f (x,y,z)}{\partial x \partial z} \\ &+ uvw \frac{\partial^3 f (x,y,z)}{\partial x \partial y \partial z} \end{align}$$