Given equation $$\cos(x) + \cos(2x) + \cos(3x) + \cos(4x) = 0,$$ which argument expansion will be the most convenient?
Asked
Active
Viewed 38 times
2 Answers
0
HINT:
Use Prosthaphaeresis Formula,
$$\cos x+\cos4x=2\cos\dfrac{5x}2\cos\dfrac{3x}2$$
$$\cos2x+\cos3x=2\cos\dfrac{5x}2\cos\dfrac x2$$
Again, $$\cos\dfrac{3x}2+\cos\dfrac x2=?$$
Now if $\cos y=0,y=(2n+1)\dfrac\pi2$ where $n$ is any integer
lab bhattacharjee
- 274,582
-
You're so fast O.o – Airdish Jun 30 '16 at 12:17
0
As $\sin\dfrac x2\ne0\iff x\ne2n\pi$(why?)$\ \ \ \ (1)$
using $\sum \cos$ when angles are in arithmetic progression,
$$\sin\left(4x+\dfrac x2\right)=\sin\left(x-\dfrac x2\right)$$
$$\implies\dfrac{9x}2=m\pi+(-1)^m\dfrac x2$$ where $m$ is any integer
If $m$ is even $=2r$(say), $$\dfrac{9x}2=2r\pi+\dfrac x2\iff x=\dfrac{r\pi}2$$ $(1)$ demands $4\nmid r$
If $m$ is odd, $=2r+1$(say), $$\dfrac{9x}2=(2r+1)\pi-\dfrac x2\iff x=\dfrac{(2r+1)\pi}5$$
lab bhattacharjee
- 274,582