I should prove that for series $\sum _{ n=1 }^{ \infty }{ { x }_{ n } } $, $(x_n > 0)$, if $\lim\limits _{ n\rightarrow \infty }{ \frac { { x }_{ n+1 } }{ { x }_{ n } } =a } $ exists then $\lim\limits_{ n\rightarrow \infty }{ \sqrt [ n ]{ { x }_{ n } } =a } $ also exists.
Converse is not true always.
How can show it? I don't how to start. Thanks beforehand.