$\frac{(a,b)}{(c,d)} = \left ( \frac{ac + bd}{c^2 + d^2}, \frac{bc - ad}{c^2 + d^2} \right )$ if $(c,d) \ne (0,0)$
I'm dealing with quaternions in my book..complex numbers. how do I derive..or proof (a,b)/(c,d)
$\frac{(a,b)}{(c,d)} = \left ( \frac{ac + bd}{c^2 + d^2}, \frac{bc - ad}{c^2 + d^2} \right )$ if $(c,d) \ne (0,0)$
I'm dealing with quaternions in my book..complex numbers. how do I derive..or proof (a,b)/(c,d)
$(a,b)/(c,d)$ is defined as $(a,b)$ times the inverse of $(c,d)$.
Let the inverse be $(p,q)$. Then you need $$(c,d)(p,q)=1$$ $$(cp-dq,cq+dp)=(1,0)$$
First if $d=0$, then $c\ne 0$ and $p=1/c$, $q=0$.
Otherwise, $$p=-\frac{cq}{d}$$ $$c\left(-\frac{cq}{d}\right)-dq=1$$ $$-\frac{c^2+d^2}{d}q=1$$ $$q=-\frac{d}{c^2+d^2}$$ $$p=\frac{c}{c^2+d^2}$$
It turns out the above expression also hold for the first case of $d=0$, as a special case.
Hence $$\frac{(a,b)}{(c,d)}=(a,b)\left(\frac{c}{c^2+d^2},-\frac{d}{c^2+d^2}\right)$$ $$=\left(\frac{ac+bd}{c^2+d^2},\frac{bc-ad}{c^2+d^2}\right)$$