I'm trying to solve Exercise 7.1.4 of Grafakos' book $\textit{Modern Fourier Analysis}$: consider two real numbers $K<L$ and a function $f \in BMO(\mathbb{R^n})$. Define the truncation of $f$ $$f_{KL}(x)= \begin{cases} K &\text{ if } f(x)<K\\ f(x) &\text{ if } K\le f(x) \le L \\ L & \text{ if } L < f(x) \end{cases}.$$ $f_{KL}$ is in $L^{\infty}(\mathbb{R^n})$, then it is in $BMO(\mathbb{R}^n)$. The goal is to prove that $$\|f_{KL}\|_{BMO} \le \frac{9}{4}\|f\|_{BMO}.$$
I've tried to solve it bluntly. Consider a cube $Q$ of $\mathbb{R}^n$. If $Q$ is totally contained in $\{f<K\}$ or in $\{f>L\}$, then $\int_{Q} |f_{KL}(x)-(f_{KL})_{Q}|dx = 0$. If $Q$ is totally contained in $\{K\le f \le L\}$, then $$\frac{1}{|Q|}\int_{Q} |f_{KL}(x)-(f_{KL})_{Q}|dx = \frac{1}{|Q|}\int_{Q} |f(x)-(f)_{Q}|dx \le \|f\|_{BMO}.$$ Then the real difficulties appear when $Q$ is not totally contained in one of these three sets. I first assume that $Q \cap \{f<K\} = \emptyset$ and $Q \cap \{L<f\}\neq \emptyset \neq Q \cap \{K \le f \le L\}$. My first idea was to introduce $f$ using the triangle inequality: \begin{eqnarray} \frac{1}{|Q|}\int_{Q}|f_{KL}(x)-(f_{KL})_{Q}|dx & \le & \frac{1}{|Q|}\left( \int_{Q}|f_{KL}(x)-f(x)|+|f(x)-f_{Q}|dx \right) + |f_{Q}-(f_{KL})_{Q}|\\ & = & \frac{1}{|Q|}\int_{Q\cap\{L<f\}} |L-f(x)| dx + \frac{1}{Q}\int_{Q}|f(x)-f_{Q}|dx+ \left|\frac{1}{|Q|}\int_{Q} f_{Q}-f_{KL}(x) dx\right|\\ & \le & \frac{1}{|Q|}\int_{Q\cap\{L<f\}} (f(x)-L) dx + \|f\|_{BMO} + \frac{1}{|Q|}\int_{Q} |f_{Q}-f_{KL}(x)| dx \\ & \le & \int_{Q\cap\{L<f\}} (f(x)-L) dx + \|f\|_{BMO} + \frac{1}{|Q|} \int_{Q\cap \{L<f\}} |f_{Q}-L|dx + \frac{1}{|Q|} \int_{Q\cap \{ L \ge f \}} |f_{Q}-f(x)| dx \\ & \le & \int_{Q\cap\{L<f\}} (f(x)-L) dx + \|f\|_{BMO} + |Q \cap \{L<f\}| \frac{|f_{Q}-L|}{|Q|} + \frac{1}{|Q|} \int_{Q} |f_{Q}-f(x)| dx\\ & \le & 2\|f\|_{BMO} + \int_{Q\cap\{L<f\}} (f(x)-L) dx + |Q \cap \{L<f\}| \frac{|f_{Q}-L|}{|Q|} \end{eqnarray} but I don't know how to go on next... Does anybody know how to procced, or if there is a totally different way to handle the problem?