$$\dfrac{\cos^2(\alpha+\beta)+\sin^2(\alpha+\beta)}{\cos^2(\alpha-\beta)}+\dfrac{\cos^2(\alpha+\gamma)+\sin^2(\alpha+\gamma)}{\cos^2(\alpha-\gamma)}$$
$$-2\cdot\dfrac{\cos(\alpha+\beta)\cos(\alpha+\gamma)+\sin(\alpha+\beta)\sin(\alpha+\gamma)}{\cos(\alpha-\beta)\cos(\alpha-\gamma)}$$
$$=\dfrac1{\cos^2(\alpha-\beta)}+\dfrac1{\cos^2(\alpha-\gamma)}-\dfrac{2\cos\{\alpha+\beta-(\alpha+\gamma)\}}{\cos(\alpha-\beta)\cos(\alpha-\gamma)}$$
$$=\dfrac{\cos^2(\alpha-\gamma)+\cos^2(\alpha-\beta)-2\cos(\alpha-\beta)\cos(\alpha-\gamma)\cos(\beta-\gamma)}{\cos^2(\alpha-\beta)\cos^2(\alpha-\gamma)}$$
Now using Prove that $\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$ for the numerator $$\cos^2(\alpha-\gamma)+\cos^2(\alpha-\beta)-2\cos(\alpha-\beta)\cos(\alpha-\gamma)\cos(\beta-\gamma)$$
$$=1+\cos^2(\alpha-\gamma)-\sin^2(\alpha-\beta)-2\cos(\alpha-\beta)\cos(\alpha-\gamma)\cos(\beta-\gamma)$$
$$=1+\cos(2\alpha-\beta-\gamma)\cos(\beta-\gamma)-2\cos(\alpha-\beta)\cos(\alpha-\gamma)\cos(\beta-\gamma)$$
$$=1+\cos(\beta-\gamma)\{\cos(2\alpha-\beta-\gamma)-2\cos(\alpha-\beta)\cos(\alpha-\gamma)\}$$
Now use Werner Formulas $2\cos A\cos B=\cdots$ on $$2\cos(\alpha-\beta)\cos(\alpha-\gamma)$$