As $\sin(180^\circ-A)=\sin A,\sin(360^\circ-B)=-\sin B$
$\sin40^\circ=\cdots=-\sin320^\circ$ and $\sin20^\circ=\cdots=\sin160^\circ$
Now use $\sin2x=2\sin x\cos x$ twice to find $$\sin320^\circ=4\sin80^\circ\cos80^\circ\cos160^\circ$$
Similarly as $\cos(180^\circ-C)=-\cos C,$
$\sin80^\circ=4\sin20^\circ\cos20^\circ\cos40^\circ=-4\sin20^\circ\cos160^\circ\cos40^\circ$
and $\sin160^\circ=4\sin40^\circ\cos40^\circ\cos80^\circ$
So we need to establish $$4\cos40^\circ\cos80^\circ+4\cos80^\circ\cos160^\circ+4\cos160^\circ\cos40^\circ=-3$$
We shall establish something more generic:
$$4\cos x\cos(120^\circ-x)+4\cos(120^\circ-x)\cos(120^\circ+x)+4\cos(120^\circ+x)\cos x=-3$$
Method $\#1:$
We have $\cos x\cos(120^\circ-x)+\cos(120^\circ+x)\cos x=\cos x(2\cos x\cos120^\circ)=-\cos^2x$
and using Werner Formula,
$2\cos(120^\circ-x)\cos(120^\circ+x)=\cos2x+\cos(2\cdot120^\circ)$
$=2\cos^2x-1+\cos(180^\circ+60^\circ)=2\cos^2x-1-\cos60^\circ=?$
Please complete the calculation.
Here we could utilize Prove that $\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$ as well.
Method $\#2:$ This is probably how the problem came into being.
If $\cos3x=\cos3A$
$3x=360^\circ m\pm3A$ where $m$ is any integer
$x=120^\circ m+ A$ where $m\equiv0,1,2\pmod3$
Now as $\cos3x=4\cos^3x-3\cos x,$
The roots of $4t^3-3t-\cos3A=0$ are
$t_1=\cos(120^\circ\cdot0+ x)=\cos x$
$t_2=\cos(120^\circ\cdot1+ x)=\cos(120^\circ+ x)$
$t_3=\cos(120^\circ\cdot2+ x)=\cos(240^\circ+ x)=\cos\{360^\circ-(120^\circ+x)\}=\cos(120^\circ-x)$
Now applying Vieta's formula,
$t_1+t_2+t_3=0$
$t_1\cdot t_2+t_2\cdot t_3+t_3\cdot t_1=-\dfrac34$
$t_1\cdot t_2\cdot t_3=\dfrac{\cos3A}4$