When I research this problem A chain of six circles associated with a cyclic hexagon. I found the followings result.
My question: Let $A_2, D_2 \in AD; B_2, E_2 \in BE, C_2, F_2 \in CF$ such that such that the sidelines of the hexagon $A_2B_2C_2D_2E_2F_2$ parallel to the sidelines of $A_1B_1C_1D_1E_1F_1$ respectively. Let line $A_2B_2$ meets the circle $(ABB_1A_1)$ at two points $A_b, B_a$. Define $B_c$, $C_b$, $C_d, D_c$, $D_e, E_d$, $E_f, F_e$, $F_a, A_f$ cyclically (cyclically meen: define the same, define similarly). Then show that twelve points: $A_b, B_a$, $B_c$, $C_b$, $C_d, D_c$, $D_e, E_d$, $E_f, F_e$, $F_a, A_f$ lie on a circle.

