OK, let us start from the well-known formula
$$\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^nx^n, \quad |x|<1 \tag{1}$$
Next we obtain the series expansion
$$\begin{align}
\frac{1}{(1+x)^2} &= -\frac{d}{dx}\frac{1}{1+x}
= - \frac{d}{dx} \sum_{n=0}^{\infty}(-1)^nx^n \\
&= -\sum_{n=0}^{\infty}n(-1)^n x^{n-1} = \sum_{n=0}^{\infty}n(-1)^{n+1}x^{n-1} \\ &= \sum_{n=1}^{\infty}n(-1)^{n+1}x^{n-1}, \quad |x|<1
\end{align} \tag{2}$$
Multiply $(2)$ by $x$ to get
$$\begin{align}
\frac{x}{(1+x)^2} &= \sum_{n=1}^{\infty}n (-1)^{n-1} x^n, \quad |x|<1
\end{align} \tag{3}$$
Replacing $x$ with $6x$ in $(3)$ and multiplying by $\dfrac{1}{6}$ gives the final result
$$\frac{x}{(1+6x)^2}=\sum_{n=1}^{\infty}n (-1)^{n-1} x^n, \quad |x|<\frac 16 \tag{4}$$