The roots of $x^6+x^5+\ldots+x+1$ over $\mathbb{C}$ are $x=\exp\left(\frac{2\pi\text{i}}{7}\right)$ for $k=1,2,\ldots,6$. Let $y:=x+\frac{1}{x}$. Then, $$\frac{x^6+x^5+\ldots+x+1}{x^3}=\left(y^3-3y\right)+\left(y^2-2\right)+y+1=y^3+y^2-2y-1\,.$$
Hence, the roots of $y^3+y^2-2y-1$ are $y=y_k:=2\,\cos\left(\frac{2k\pi}{7}\right)$ for $k=1,2,3$. Observe that $$S:=\sum_{k=1}^3\,\frac{1}{\cos^{2}\left(\frac{k\pi}{7}\right)}=\sum_{k=1}^3\,\frac{2}{1+\cos\left(\frac{2k\pi}{7}\right)}=4\,\sum_{k=1}^3\,\frac{1}{2+y_k}\,.$$
Since $y_k^3+y_k^2-2y_k-1=0$, we have $$y_k^2-y_k=\frac{1}{2+y_k}$$ for all $k=1,2,3$. Consequently,
$$S=4\,\sum_{k=1}^3\,\left(y_k^2-y_k\right)\,.$$
The rest should be easy.
In general, let $n$ be a nonnegative integer and we are evaluating the sums $\displaystyle \sum_{k=0}^{2n}\,\frac{1}{\cos^{2}\left(\frac{k\pi}{2n+1}\right)}$ and $\displaystyle \sum_{k=1}^{n}\,\frac{1}{\cos^{2}\left(\frac{k\pi}{2n+1}\right)}$. The roots of $x^{2n+1}-1$ over $\mathbb{C}$ are $x=x_k:=\exp\left(\frac{2k\pi}{2n+1}\right)$, for $k=0,1,2,\ldots,2n$. Observe that
$$\frac{1}{1+x_k}=\frac{1}{2}\,\left(\frac{1+x_k^{2n+1}}{1+x_k}\right)=\frac{1}{2}\,\sum_{j=0}^{2n}\,(-1)^j\,x_k^j=\frac{2n+1}{2}-\frac{1}{2}\,\sum_{j=1}^{2n}\,\left(1-\left(-x_k\right)^j\right)\,.$$
That is,
$$\frac{1}{\left(1+x_k\right)^2}=\frac{2n+1}{2}\left(\frac{1}{1+x_k}\right)-\frac{1}{2}\,\sum_{j=1}^{2n}\,\sum_{i=0}^{j-1}\,(-1)^i\,x_k^i\,,$$
or equivalently,
$$\frac{1}{\left(1+x_k\right)^2}=\frac{2n+1}{4}\,\sum_{j=0}^{2n}\,(-1)^j\,x_k^j-\frac{1}{2}\,\sum_{j=1}^{2n}\,\sum_{i=0}^{j-1}\,(-1)^i\,x_k^i\,.$$
Consequently,
$$\frac{x_k}{\left(1+x_k\right)^2}=\frac{2n+1}{4}\,\sum_{j=0}^{2n}\,(-1)^j\,x_k^{j+1}-\frac{1}{2}\,\sum_{j=1}^{2n}\,\sum_{i=0}^{j-1}\,(-1)^i\,x_k^{i+1}=\frac{2n+1}{4}+f\left(x_k\right)$$ for some polynomial $f(x)$ of degree at most $2n$ without the constant term. Then, $$\sum_{k=0}^{2n}\,\frac{x_k}{\left(1+x_k\right)^2}=\frac{(2n+1)^2}{4}+\sum_{k=1}^{2n}\,f\left(x_k\right)\,.$$
It is evident that $\displaystyle\sum_{k=0}^{2n}\,f\left(x_k\right)=0$. Furthermore, $$\frac{x_k}{\left(1+x_k\right)^2}=\frac{1}{2}\,\left(\frac{1}{1+\cos\left(\frac{2k\pi}{2n+1}\right)}\right)=\frac{1}{4}\,\left(\frac{1}{\cos^2\left(\frac{k\pi}{2n+1}\right)}\right)\,.$$ Ergo,
$$\frac{1}{4}\,\sum_{k=0}^{2n}\,\frac{1}{\cos^2\left(\frac{k\pi}{2n+1}\right)}=\sum_{k=0}^{2n}\,\frac{x_k}{\left(1+x_k\right)^2}=\frac{(2n+1)^2}{4}\,.$$ This shows that $$\sum_{k=0}^{2n}\,\frac{1}{\cos^2\left(\frac{k\pi}{2n+1}\right)}=(2n+1)^2\,.$$ Furthermore, we have
$$\sum_{k=1}^n\,\frac{1}{\cos^2\left(\frac{k\pi}{2n+1}\right)}=\frac{(2n+1)^2-1}{2}=2n(n+1)\,.$$