From what you learned in algebra
$\sum x^n$ converges if |x|<1
So, what about: $\sum \frac {x^n}{n!}?$
For any $x,$ soon enough $n>x$ and $\frac xn < 1.$ In our series, each term equals its predecessor multiplies by $\frac x{n+1}$ and if $n>x, \frac x{n+1} <1$. This means that we can compare our series to a geometric series that we know converges.
$\sum \frac {x^n}{n!} = \sum_\limits{n = 0}^{N-1} \frac {x^n}{n!} + \sum_\limits{n = N}^\infty \frac {x^n}{n!}$
and $\sum_\limits{n = N}^\infty \frac {x^n}{n!} < \frac {x^N}{N!} \sum r^n$ with $|r|<1$
Is that sufficient to prove continuity?
Every finite polynomial is continuous.
$\forall \epsilon > 0, x,y, \exists N>0, \delta >0, |y-x|<\delta\\
(\sum_\limits{n = 0}^{N-1} \frac {y^n}{n!} - \frac{x^n}{n!})<\frac \epsilon 3$
and from above:
$|\sum_\limits{n = N}^\infty \frac {x^n}{n!}| < \frac \epsilon 3$
$\sum_\limits{n = 0}^{N-1} \frac {y^n}{n!} - \frac{x^n}{n!} + \sum_\limits{n = N}^\infty \frac {y^n}{n!} - \sum_\limits{n = N}^\infty \frac {x^n}{n!} < \epsilon$
$|y-x|<\delta \implies |e^y - e^x| <\epsilon$