Is there a way to generalize $\dim(\sum_{i=1}^{k}W_i)$ from the following formula?
$\dim(U+W)=\dim U+\dim W-\dim (U \cap W)$
I tried looking at examples
$k=3$:
$\dim(W_1+W_2+W_3)=\dim(W_1+W_2)+\dim W_3-\dim((W_1+W_2) \cap W_3)=$ $\dim W_1+\dim W_2+\dim W_3-\dim(W_1\cap W_2)-\dim((W_1+W_2) \cap W_3)$
$k=4$:
$\dim(W_1+W_2+W_3+W_4)=$
$\dim (W_1+W_2+W_3)+\dim W_4-\dim ((W_1+W_2+W_3)\cap W_4)$=
$\dim W_1+\dim W_2+\dim W_3+\dim W_4-\dim(W_1\cap W_2)+ \cdots$
$\cdots -\dim((W_1+W_2) \cap W_3)-\dim ((W_1+W_2+W_3)\cap W_4)$
So I guess $\dim(\sum_{i=1}^{k}W_i)=\sum_{i=1}^{k}\dim(W_i)-\sum_{i=1}^{k}\dim((\sum_{j=1}^{i-1}W_j)\cap W_i)$. Is it true? If so, how do I prove it?
Also if it is true, can I conclude $\dim(\bigoplus_{i=1}^k W_i) =\sum_{i=1}^{k}\dim W_i$? How?