Using degrees as a measure unit,
$$ \sin(60+6)\sin(60-6) = \frac{1}{2}\left(\cos(12)-\cos(10\cdot 12)\right)$$
and
$$ \sin(4\cdot 12)\sin(8\cdot 12) = \frac{1}{2}\left(\cos(4\cdot 12)-\cos(12\cdot 12)\right)$$
hence the problem boils down to proving that
$$\cos(12)-\cos(48)+\cos(144)=-\frac{1}{2}$$
or, reverting to radians, proving that $x=\cos\left(\frac{2\pi}{30}\right)$ is a root of the polynomial
$$ 1+2\,T_1(x)-2\,T_4(x)+2\,T_{12}(x)\\=\color{red}{1 + 2 x - 128 x^2 + 1664 x^4 - 7168 x^6 + 13824 x^8 - 12288 x^{10} +
4096 x^{12}}. $$
Since the minimal polynomial of $\cos\left(\frac{2\pi}{30}\right)$ is $\color{blue}{1 - 8 x - 16 x^2 + 8 x^3 + 16 x^4}$, it is enough to check that the blue polynomial is a divisor of the red polynomial.