If $p\mid a$, then both the sides are $0$ as $\{bx+c\}_{x=0}^{p-1}$ forms a complete residue system mod $p$. So, let us assume $p\nmid a$.
Let $ f(x) = ax^2 + bx + c $
$ \Rightarrow \left( \frac{f(x)}{p} \right) \equiv f(x)^{\frac{p-1}{2}} \equiv a_0 + a_1x + \dots a_{p-1}x^{p-1} ( \mbox{ mod } p \ ) $
Thus\begin{align*} \sum_{x=0}^{p-1} \left( \frac{f(x)}{p} \right) & = \sum_{x=0}^{p-1} f(x)^{\frac{p-1}{2}} \\ & \equiv \sum_{x=0}^{p-1} \sum_{j=0}^{p-1} a_j x^j ( \mbox{ mod } p \ ) \\ & \equiv \sum_{j=0}^{p-1}a_j \sum_{x=0}^{p-1} x^j ( \mbox{ mod } p \ ) \\ & \equiv -a_{p-1} \equiv -a^{\frac{p-1}{2}} \equiv - \left( \frac{a}{p} \right) ( \mbox{ mod } p \ ) \end{align*}
The third last congruence follows from the fact that defining $ S_n = \sum_{x=0}^{p-1} x^n $, we know that $ S_n \equiv -1 ( \mbox{ mod } p \ ) $ if $ p-1 \ | \ n $ and $ S_n \equiv 0 ( \mbox{ mod } p \ ) $ otherwise.
Also, note that proving
$$\sum_{x=0}^{p-1} \left( \frac{f(x)}{p} \right)\equiv - \left( \frac{a}{p} \right) ( \mbox{ mod } p \ )$$
is enough as the only values the Legendre symbol takes are $1$ and $-1$.