See THIS ANSWER for a more general development of the one we present herein.
We will show that $\left(1-\frac1n\right)^n$ and $\left(1-\frac1n\right)^{n-1}$ are increasing and decreasing sequences, respectively, using Bernoulli's Inequality.
Let $a_n=\left(1-\frac1n\right)^n$. Then, we have
$$\begin{align}
\frac{a_{n+1}}{a_{n}}&=\frac{\left(1-\frac1{n+1}\right)^{n+1}}{\left(1-\frac1n\right)^n}\\\\
&=\left(1-\frac1n\right)\,\left(1+\frac{1}{n^2-1}\right)^{n+1} \tag 1\\\\
&\ge \left(1-\frac1n\right)\,\left(1+\frac{1}{n-1}\right) \tag 2\\\\
&=1
\end{align}$$
where in going from $(1)$ to $(2)$, we exploited Bernoulli's Inequality. Therefore, $a_n$ is monotonically increasing. Since its limit is $1/e$ we have
$$\bbox[5px,border:2px solid #C0A000]{\left(1-\frac1n\right)^n\le \frac1e} \tag 3$$
Let $b_n=\left(1-\frac1n\right)^{n-1}$. Then, we have
$$\begin{align}
\frac{b_{n}}{b_{n+1}}&=\frac{\left(1-\frac1n\right)^{n-1}}{\left(1-\frac1{n+1}\right)^{n}}\\\\
&=\left(\frac{1}{\left(1-\frac1n\right)}\right)\left(1-\frac{1}{n^2}\right)^n \tag 4\\\\
&\ge \left(\frac{1}{\left(1-\frac1n\right)}\right)\left(1-\frac{1}{n}\right) \tag 5\\\\
&=1
\end{align}$$
where in going from $(4)$ to $(5)$, we exploited Bernoulli's Inequality again. Therefore, $b_n$ is monotonically increasing. Since its limit is $1/e$ we have
$$\bbox[5px,border:2px solid #C0A000]{\left(1-\frac1n\right)^{n-1}\ge \frac1e} \tag 6$$
Putting $(3)$ and $(6)$ together yields the coveted inequalities
$$\bbox[5px,border:2px solid #C0A000]{\left(1-\frac1n\right)^{n}\le \frac1e \le \left(1-\frac1n\right)^{n-1}}$$