I am trying to solve the following limit:
\begin{equation} \lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}} \end{equation}
I tried using $ \ln $ to get a exponential expression for the equation as follows:
\begin{equation} \text{Let} \,\, y = \left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}} \end{equation}
Apply $ \ln $ to bring down power and apply exponential:
\begin{equation} y = \exp\left(\frac{1}{x^{2}}\ln\left(\frac{\sin x}{x}\right)\right) \end{equation}
I have no idea how to solve the limit for $y$. From what I read, it can be done using l'Hopital rule but I am unable to get an indeterminate form no matter how I try. Could somone please assist me?
Since, $$\sin x -x \sim -\frac{x^3}{6}~~~~and ~~~~ \lim_{h\to 0} \frac{\ln\left(1-h\right)}{h} = -1$$
– Guy Fsone Nov 27 '17 at 15:31