1

I guess the title is self-explanatory, but according to Wikipedia, the second step is to take the minimal solution (A, B):

The minimal solution (A, B) with respect to some function of A and B, usually A + B, is taken. The equation is then rearranged into a quadratic with coefficients in terms of B, one of whose roots is A, and Vieta's formulas are used to determine the other root to the quadratic.

However, I do not fully see the need to take the minimal solution, can someone explain that step for me?

Snowflake
  • 215

1 Answers1

1

The transformation exists for all solutions, as do some others such as exchanging $a$ and $b$, or changing their signs. Call two solutions equivalent if they can be reached from each other by sequences of those transformations.

The purpose of choosing a "minimal" solution is to pick out a simplest equivalent of any given solution, which might then be seen to have some other special property, such as $ab=0$, that has implications for all its equivalent solutions (such as all of them having $(a^2+b^2)/(ab+1)$ a perfect square, since that ratio is invariant under the transformations).

zyx
  • 35,436