$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Note that $\ds{\arctan\pars{\root{3} \over 3} = {\pi \over 6} \approx 0.5236}$
and $\ds{\verts{{1/2 \over \pi/6} - 1} \sim 10^{-2}}$. Then, it will be useful to expand $\ds{\arctan\pars{x}}$ 'around' $\ds{x = {\root{3} \over 3}}$.
For example, up to the second order of $\ds{\pars{\half - {\root{3} \over 3}}}$:
\begin{align}
\color{#f00}{\arctan\pars{\half}} & =
\arctan\pars{{\root{3} \over 3} + \bracks{\half - {\root{3} \over 3}}}
\\[1cm] & \approx
\arctan\pars{\root{3} \over 3} +
\arctan'\pars{\root{3} \over 3}\pars{\half - {\root{3} \over 3}}
\\[5mm] & +
\half\,\arctan''\pars{\root{3} \over 3}\pars{\half - {\root{3} \over 3}}^{2}
\\[1cm] & =
{\pi \over 6} + {3 \over 4}\pars{\half - {\root{3} \over 3}} -
{3\root{3} \over 16}\pars{\half - {\root{3} \over 3}}^{2} =
\color{#f00}{{\pi \over 6} - \pars{{23 \over 64}\,\root{3}- {9 \over 16}}} \equiv \xi
\\[5mm] & \approx \color{#f00}{0.4636}
\end{align}
with corrections of order $\ds{10^{-4}}$.
Note that $\ds{\tan\pars{\xi} \approx 0.49999\color{#f00}{4259547465}}$.