Can you prove this identity?
$$\exp \left(\sum _{n=1}^{\infty} \frac{1}{n \left(1-c^n\right)}\right)=\prod _{n=1}^{\infty} \left(1-\frac{1}{c^n}\right)$$
where $|c|>2$.
I found this conjecture by entering the expression similar to the expression in the left hand side: $$\sum _{n=1}^{\infty} \frac{1}{n \left(1-2^n\right)}$$ into Excel and looking up the number in the advanced version of the inverse symbolic calculator which told me that:
$$\exp \left(\sum _{n=1}^{\infty} \frac{1}{n \left(1-2^n\right)}\right)=\prod _{n=1}^{\infty} \left(1-\frac{1}{2^n}\right)$$
After that I generalized by guessing that $2$ could be replaced by $c$.
Update 25.1.2017:
Let $$s=0 \text{ or } s=1$$ $$\sum _{n=1}^{\infty} \frac{1}{\left(1-c^n\right) n^s}=\sum _{n=1}^{\infty} \lim_{z\to s} \, (z-2) \zeta (z) \left(1-\frac{1}{\left(\frac{c^n}{c^n-1}\right)^{z-1}}\right)$$
Associated Mathematica code of these two small attempts to generalize as above:
(*Mathematica start*)
Clear[s, z, n]
s = 0;
c = N[2, 50];
Sum[1/(n^s*(1 - c^n)), {n, 1, 200}]
Sum[Limit[(z - 2)*Zeta[z]*(1 - 1/(c^n/(c^n - 1))^(z - 1)),
z -> s], {n, 1, 100}]
s = 1;
c = N[2, 50];
Sum[1/(n^s*(1 - c^n)), {n, 1, 200}]
Sum[Limit[(z - 2)*Zeta[z]*(1 - 1/(c^n/(c^n - 1))^(z - 1)),
z -> s], {n, 1, 100}]
(*end*)
-1.6066951524152917637833015231909245804805796715058
-1.606695152415291763783301523190135719575358660
-1.2420620948124149457978454818946296689734039782504
-1.242062094812414945797845481893840808068182966