I know how to find $$\sum_{k=0}^{\lfloor n/2\rfloor}{{n}\choose{2k}} = 2^{k-1}.$$
But I have no idea how to find $\sum_{k=0}^{\lfloor n/3\rfloor}{{n}\choose{3k}}$ and $\sum_{k=0}^{\lfloor n/4\rfloor}{{n}\choose{4k}}$. Some hint could be useful.
I know how to find $$\sum_{k=0}^{\lfloor n/2\rfloor}{{n}\choose{2k}} = 2^{k-1}.$$
But I have no idea how to find $\sum_{k=0}^{\lfloor n/3\rfloor}{{n}\choose{3k}}$ and $\sum_{k=0}^{\lfloor n/4\rfloor}{{n}\choose{4k}}$. Some hint could be useful.
Let $z_1=e^{2\pi i/3}$ and $z_2=e^{-2i\pi/3}$, then $$(1+1)^n + (1+z_1)^n + (1+z_2)^n=2^n +2\cos(n\pi/3)=3\sum_{k=0}^{\lfloor n/3\rfloor}{{n}\choose{3k}}$$ Hence $$\sum_{k=0}^{\lfloor n/3\rfloor}{{n}\choose{3k}}=\frac{2^n+2\cos(n\pi/3)}{3}= \frac{2^n+a_n}{3}$$ where $a_n$ is the 6-periodic sequence $\{2, 1, -1, -2, -1, 1\}$.
The details can be found here: Roots of unity filter, identity involving $\sum_{k \ge 0} \binom{n}{3k}$
By using a similar method, it turns out that for $n\geq 1$, $$\sum_{k=0}^{\lfloor n/4\rfloor}{{n}\choose{4k}}=2^{n-2}+2^{(n-2)/2}\cos(n\pi/4).$$ See the nice answer of robjohn.
If $\omega=e^{2\pi i/3}$, then $$ \frac{1+\omega^n+\omega^{-n}}3=\left\{\begin{array}{} 1&\text{if }n\equiv0\pmod3\\ 0&\text{if }n\not\equiv0\pmod3\\ \end{array}\right. $$ Therefore, $$ \begin{align} \sum_{k=0}^{\lfloor n/3\rfloor}\binom{n}{3k} &=\sum_{k=0}^n\binom{n}{k}\frac{1+\omega^k+\omega^{-k}}3\\[4pt] &=\frac{2^n}3+\frac{(1+\omega)^n}3+\frac{\left(1+\omega^{-1}\right)^n}3\\[4pt] &=\frac{2^n}3+\frac{e^{\pi in/3}}3+\frac{e^{-\pi in/3}}3\\[4pt] &=\frac{2^n+2\cos\left(\frac{\pi n}3\right)}3 \end{align} $$ Note that $2\cos\left(\frac{\pi n}3\right)=\{2,1,-1,-2,-1,1\}$ when $n\equiv\{0,1,2,3,4,5\}\pmod6$.
$$ \frac{1+i^n+(-1)^n+(-i)^n}4=\left\{\begin{array}{} 1&\text{if }n\equiv0\pmod4\\ 0&\text{if }n\not\equiv0\pmod4\\ \end{array}\right. $$ Therefore, $$ \begin{align} \sum_{k=0}^{\lfloor n/4\rfloor}\binom{n}{4k} &=\sum_{k=0}^n\binom{n}{k}\frac{1+i^k+(-1)^k+(-i)^k}4\\[4pt] &=\frac{2^n}4+\frac{(1+i)^n}4+\frac{0^n}4+\frac{(1-i)^n}4\\[4pt] &=\frac{2^n}4+\frac{2^{n/2}e^{\pi in/4}}4+\frac{0^n}4+\frac{2^{n/2}e^{-\pi in/4}}4\\[4pt] &=\frac{2^n+[n=0]+2^{n/2}\cdot2\cos\left(\frac{\pi n}4\right)}4 \end{align} $$ Note that $2\cos\left(\frac{\pi n}4\right)=\left\{2,\sqrt2,0,-\sqrt2,-2,-\sqrt2,0,\sqrt2\right\}$ when $n\equiv\{0,1,2,3,4,5,6,7\}\pmod8$.
$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}_{#1}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
I believe that
@RobertZand@robjohnanswers provide the straightforward and simpler methods. However, it will be useful to see another point of view which is somehow related to the above mentioned answers.