1

I've tried integration by parts as well as substitution using $u=e^{t}$ but nothing seems to work.

$$\int\left(1-e^{-t}\right) \cdot \exp({e^{t}}) dt$$

Can someone please help? Thanks

Matthew Cassell
  • 4,248
  • 4
  • 21
  • 30

2 Answers2

11

Factoring, we get: $$I:= \int \left(1-e^{-t}\right)e^{e^t}\,\mathrm d t = \int \left(e^t-1\right)e^{e^t-t}\,\mathrm d t$$ Now substitute $u=e^t-t$ and thus $\dfrac{\mathrm d u}{\mathrm d t}=e^t-1$ to get $$I=\int e^u\,\mathrm d u=e^u+C=\boxed{e^{e^t-t}+C}$$

John Doe
  • 1,257
0

Hint: $1-e^{-t}=f'(t)+g'(t)f(t)$ with $g(t)=e^t, f(t)=e^{-t}$. see for instance

Dealing with integrals of the form $\int{e^x(f(x)+f'(x))}dx$

Idris Addou
  • 4,193