I need to show the following identity. Any lead will be helpful and appreciated. Thanks in advance.
$$\binom{n}{m} m \sum_{i=0}^{m-1} \frac{\binom{m-1}{i}(-1)^i}{n-m+1+i}=1$$ for fixed $n$ and $m$.
I need to show the following identity. Any lead will be helpful and appreciated. Thanks in advance.
$$\binom{n}{m} m \sum_{i=0}^{m-1} \frac{\binom{m-1}{i}(-1)^i}{n-m+1+i}=1$$ for fixed $n$ and $m$.
$$S=\sum_{i=0}^{m-1}\binom{m-1}{i}\frac{(-1)^i}{n-m+i+1}=\int_{0}^{1}\sum_{i=0}^{m-1}\binom{m-1}{i}(-1)^i x^{n-m+i}\,dx $$
hence by the binomial theorem
$$ S = \int_{0}^{1}\frac{x^n}{1-x}\left(-1+\frac{1}{x}\right)^{m}\,dx $$
and by setting $x=\frac{1}{z}$, then $z=t+1$, we get:
$$ S = \int_{1}^{+\infty}\frac{(z-1)^{m-1}}{z^{n+1}}\,dz = \color{red}{\int_{0}^{+\infty}\frac{t^{m-1}}{(1+t)^{n+1}}\,dt}. $$
The last integral is easy to compute by integration by parts, or by using Euler's beta function.
At last we have:
$$ S = \frac{\Gamma(m)\Gamma(n-m+1)}{\Gamma(n+1)} = \frac{m!(n-m)!}{m\cdot n!} = \color{red}{\frac{1}{m\binom{n}{m}}}$$
as wanted.
The following MSE link proves that
$$\sum_{k=0}^n \frac{1}{x+k} (-1)^k {n\choose k} = n! \times \prod_{q=0}^n \frac{1}{x+q}.$$
Put $n=m-1$ and $x=n-m+1$ to get
$$(m-1)! \times \prod_{q=0}^{m-1} \frac{1}{n-m+1+q} \\ = (m-1)! \times \frac{(n-m)!}{n!} = \frac{1}{m} \times {n\choose m}^{-1}.$$