Find a formula for the $n$th term of the sequence $$1,2,2,3,3,3,4,4,4,4,\ldots.$$
Let $x_n$ denote the $n$th term of the sequence. If $$1+2+\cdots+m < n \leq 1+2+\cdots+m+(m+1)$$ then $x_n = m+1$. Is this a formula or not?
Find a formula for the $n$th term of the sequence $$1,2,2,3,3,3,4,4,4,4,\ldots.$$
Let $x_n$ denote the $n$th term of the sequence. If $$1+2+\cdots+m < n \leq 1+2+\cdots+m+(m+1)$$ then $x_n = m+1$. Is this a formula or not?
It should be $\lfloor\sqrt{2n} + \frac{1}{2}\rfloor$, where $n$ is the term number
This is not considered a formula, because it does not give $x_n$ as a function of $n$ but instead gives (sharp) bounds on what $x_n$ is. Instead, note that
Here $T_n$ is the $n$th triangular number. There is an analogue of the square root – the triangular root – that yields $n$ given $T_n$: $$n=\frac{\sqrt{8T_n+1}-1}2$$ Therefore a possible formula for $x_n$ is $$x_n=\left\lceil\frac{\sqrt{8n+1}-1}2\right\rceil$$ Alternatively, this sequence is A002024 in the OEIS and a simpler formula given there is $$x_n=\left\lfloor\sqrt{2n}+\frac12\right\rfloor$$
$$6,z^{50}+6,z^{49}+6,z^{48}+6,z^{47}+6,z^{46}+6,z^{45}+6,z^{ 44}+6,z^{43}+6,z^{42}+6,z^{41}+6,z^{40}+6,z^{39}+6,z^{38}+6,z ^{37}+6,z^{36}+6,z^{35}+6,z^{34}+6,z^{33}+6,z^{32}+5,z^{31}+5 ,z^{30}+5,z^{29}+5,z^{28}+5,z^{27}+5,z^{26}+5,z^{25}+5,z^{24} +5,z^{23}+5,z^{22}+5,z^{21}+5,z^{20}+5,z^{19}+5,z^{18}+5,z^{ 17}+5,z^{16}+4,z^{15}+4,z^{14}+4,z^{13}+4,z^{12}+4,z^{11}+4,z ^{10}+4,z^9+4,z^8+3,z^7+3,z^6+3,z^5+3,z^4+2,z^3+2,z^2+z +\cdots $$
– Oct 02 '16 at 04:40