1

I want to find the limit of following sequence by using Cauchy theorem and I don't know how.

$\displaystyle{% \lim_{n \to \infty}\left[% \left(n + 1\right)\left(n + 2\right)\cdots\left(n + n\right) \over n^{n}\right]^{1/n}} $

Can someone help me ?.

Felix Marin
  • 89,464

1 Answers1

1

By Cauchy's second limit theorem (with $a_n > 0$)

$$\lim_{n \to \infty} a_n ^{1/n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}. $$

In this case,

$$\begin{align} \lim_{n \to \infty}\left[\frac{(n+1)(n+2)\cdots(n+n)}{n^n}\right]^{1/n} &= \lim_{n \to \infty}\left[\frac{(2n)!}{n^n n!} \right]^{1/n} \\ &= \lim_{n \to \infty} \frac{(2n+2)!}{(n+1)^{n+1} (n+1)!} \frac{n^n n!}{(2n)!} \\ &= \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)(n+1)} \frac{n^n}{(n+1)^n} \\ &= \lim_{n \to \infty} \frac{(2+2/n)(2+1/n)}{(1+1/n)(1+1/n)} \lim_{n \to \infty} \frac{1}{(1 + 1/n)^n} \\ &= \frac{4}{e}\end{align} $$

RRL
  • 90,707