$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
The following integral converges whenever
$\ds{0 < \Re\pars{\alpha} < 1}$.
\begin{align}
\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!
\int_{0}^{\infty}{1 \over x^{\alpha}}\,{1 \over 1 + x}\,\dd x & =
\int_{0}^{1}{x^{-\alpha} \over 1 + x}\,\dd x +
\int_{1}^{\infty}{x^{-\alpha} \over 1 + x}\,\dd x =
\int_{0}^{1}{x^{-\alpha} + x^{\alpha - 1} \over 1 + x}\,\dd x
\\[5mm] & =
\int_{0}^{1}{x^{-\alpha} + x^{\alpha - 1} - x^{-\alpha + 1} - x^{\alpha}
\over 1 - x^{2}}\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{1}{x^{-\alpha/2 - 1/2} + x^{\alpha/2 - 1} -
x^{-\alpha/2} - x^{\alpha/2 - 1/2}
\over 1 - x}\,\dd x
\\[5mm] & =
{1 \over 2}\bracks{%
-\Psi\pars{-\,{\alpha \over 2} + {1 \over 2}} -
\Psi\pars{\alpha \over 2} +
\Psi\pars{-\,{\alpha \over 2} + 1} +
\Psi\pars{{\alpha \over 2} + {1 \over 2}}}\label{1}\tag{1}
\\[5mm] & =
{1 \over 2}\braces{{%
\bracks{\vphantom{\Huge A}\Psi\pars{{\alpha \over 2} + {1 \over 2}} -
\Psi\pars{-\,{\alpha \over 2} + {1 \over 2}}}} +
\bracks{\vphantom{\Huge A}\Psi\pars{-\,{\alpha \over 2} + 1} -
\Psi\pars{\alpha \over 2}}}
\\[5mm] & =
{1 \over 2}\braces{\vphantom{\huge A}%
\pi\cot\pars{\pi\bracks{-\,{\alpha \over 2} + {1 \over 2}}} +
\pi\cot\pars{\pi\,{\alpha \over 2}}}\label{2}\tag{2}
\\[5mm] & =
{\pi \over 2}\braces{\vphantom{\huge A}\tan\pars{\pi\,{\alpha \over 2}} +
\cot\pars{\pi\,{\alpha \over 2}}} = \bbx{\pi\csc\pars{\pi\alpha}}
\end{align}
$$\bbox[20px,#ffe,border:1px groove navy]{%
\left\{\begin{array}{rcl}
\ds{\Psi}: && Digamma\ Function.
\\[4mm]
\ds{\Psi\pars{z + 1} + \gamma} & \ds{=} &
\ds{\int_{0}^{1}{1 - t^{z} \over 1 - t}\,\dd t\,,\quad\Re\pars{z} > - 1\,,\quad
\pars{~\mbox{see}\ \eqref{1}~}}
\\
\ds{\gamma}: && Euler\!-\!Mascheroni\ Constant
\\[4mm]
\ds{\Psi\pars{1 - z} - \Psi\pars{z}} & \ds{=} & \ds{\pi\cot\pars{\pi z}\,,
\quad \pars{~Euler\ Reflection\ Formula~}.\ \mbox{See}\ \eqref{2}.}
\end{array}\right.}
$$