Something went wrong in your computation for $n=1$, which is going to conclude in $cos1=-1-cos1$.
It shall go like this:
$$
\begin{gathered}
- \frac{1}
{2} + \frac{{\sin \left( {1 + 1/2} \right)}}
{{2\sin \left( {1/2} \right)}} = \frac{1}
{2}\left( {\frac{{\sin \left( 1 \right)\cos \left( {1/2} \right) + \cos \left( 1 \right)\sin \left( {1/2} \right)}}
{{\sin \left( {1/2} \right)}} - 1} \right) = \hfill \\
= \frac{1}
{2}\left( {\frac{{\sin \left( 1 \right)\cos \left( {1/2} \right) + \left( {\cos \left( 1 \right) - 1} \right)\sin \left( {1/2} \right)}}
{{\sin \left( {1/2} \right)}}} \right) = \hfill \\
= \frac{1}
{2}\left( {\frac{{2\sin \left( {1/2} \right)\cos ^{\,2} \left( {1/2} \right) + \left( {2\cos ^{\,2} \left( {1/2} \right) - 2} \right)\sin \left( {1/2} \right)}}
{{\sin \left( {1/2} \right)}}} \right) = \hfill \\
= \frac{1}
{2}\left( {2\cos ^{\,2} \left( {1/2} \right) + \left( {2\cos ^{\,2} \left( {1/2} \right) - 2} \right)} \right) = \left( {2\cos ^{\,2} \left( {1/2} \right) - 1} \right) = \cos 1 \hfill \\
\end{gathered}
$$
After that, we have:
$$
\begin{gathered}
\cos 1 + \cos 2 + \; \cdots \; + \cos n + \cos (n + 1) = \hfill \\
= - \frac{1}
{2} + \frac{{\sin \left( {n + 1/2} \right)}}
{{2\sin \left( {1/2} \right)}} + \cos (n + 1) = \hfill \\
= \frac{1}
{2}\left( {\frac{{\sin \left( {n + 1/2} \right)}}
{{\sin \left( {1/2} \right)}} - 1 + 2\cos (n + 1)} \right) = \hfill \\
= \frac{1}
{2}\left( {\frac{{\sin \left( {n + 1/2} \right) - \sin \left( {1/2} \right) + 2\cos (n + 1)\sin \left( {1/2} \right)}}
{{\sin \left( {1/2} \right)}}} \right) = \hfill \\
= \frac{1}
{2}\left( {\frac{{\sin \left( {n + 1} \right)\cos \left( {1/2} \right) + \cos \left( {n + 1} \right)\sin \left( {1/2} \right) - \sin \left( {1/2} \right)}}
{{\sin \left( {1/2} \right)}}} \right) = \hfill \\
= \frac{1}
{2}\left( {\frac{{\sin \left( {n + 1 + 1/2} \right) - \sin \left( {1/2} \right)}}
{{\sin \left( {1/2} \right)}}} \right) = - \frac{1}
{2} + \frac{{\sin \left( {n + 1 + 1/2} \right)}}
{{\sin \left( {1/2} \right)}} \hfill \\
\end{gathered}
$$
which is the demonstration you are looking for.