How should I prove that $\log_{2}{3} < \log_{3}{6}$?
I tried something like this: $2^{\log_{2}{3}}< 2^{\log_{3}{6}}$, $3<6^{\log_{3}{2}}$, $\log_{6}{3}<\log_{6}{6^{\log_{3}{2}}}=\log_{3}{2}$, $\frac{1}{\log_{3}{6}}< \log_{3}{2}$. $\frac{1}{1+\log_{3}{2}}<\log_{3}{2}$, but still nothing.