Let $(x_n)_n$ and $(y_n)_n$ be sequences in $\mathbb{R}$, such that $(x_n)_n$ converges to $x \in \mathbb{R}^+$. Suppose that $(y_n)_n$ is bounded.
Prove that $$\limsup_{n \to +\infty} x_n \cdot y_n = x \cdot \limsup_{n \to +\infty} y_n$$
I know that $x=\limsup_{n \to +\infty} x_n$, so it basically comes down to proving $\limsup_{n \to +\infty} x_n \cdot y_n = \limsup_{n \to +\infty} x_n \cdot \limsup_{n \to +\infty} y_n$, but that's where I'm stuck...