Hint $\ $ Exploit innate symmetry using the following observation
$$\begin{eqnarray}a\equiv c,&&\ b\equiv d\!\!\pmod{m}\\
a\equiv d,&&\ b\equiv c\!\!\pmod{k}\end{eqnarray}\, \Rightarrow\,\ e := a^n+b^n-c^n-d^n\equiv 0\!\! \pmod{{\rm lcm}(m,k))}$$
because $\ \ {\rm mod}\ m\!:\ a\equiv c\,\Rightarrow a^n\equiv c^n,\ \ b\equiv d\,\Rightarrow\ b^n\equiv d^n\,\Rightarrow\,e\equiv 0\, $ by Congruence Power Rule.
Similarly $\, {\rm mod}\ k\!:\,\ e\equiv 0.\ $ Thus $\ m,k\mid e\,\Rightarrow\,{\rm lcm}(m,k)\mid e$.
Remark $\ $ More generally, bringing to the fore the innate symmetry yields:
Assume $ \{a,b\}\equiv \{c,d\}\ {\rm mod}\ m,k\ $ and $\,f(x,y)\,$ is symmetric $\,f(x,y)=f(y,x).$
Then $\,\ \ f(a,b)\equiv f(c,d)\ {\rm mod}\ m,k\,$ so also mod $\,{\rm lcm}(m,k).$
OP has $\, f(x,y) = x^n + y^n.$
Remark $\ $ See here and here for some explicit examples.