$\sum_{n=1}^{+\infty}\left[n \log\left ( \frac{2n+1}{2n-1} \right )-1\right]$ ,converges or not
My attempt
$a_n=n \log\left ( \frac{2n+1}{2n-1} \right )-1 \\ \\ \log \left ( \frac{2n+1}{2n-1} \right )=\log \left ( 1+\frac{2}{2n-1} \right ) \sim \frac{2}{2n-1} \ (n\rightarrow +\infty) \\ \\ a_n=n\log \left ( 1+\frac{2}{2n-1} \right )-1 \sim n \frac{2}{2n-1}-1=\frac{2n}{2n-1}-1=\frac{1}{2n-1} \\ \\ $
$\sum_{n=1}^{+\infty}\frac{1}{2n-1} $ diverges ,then $\sum_{n=1}^{+\infty}a_n $ diverges
but according to Wolfram $\sum_{n=1}^{+\infty}a_n=\frac{1}{2}-\frac{\log 2}{2}$
where is the mistake in my solution please?
thanks