Solve the congruence relation $$1978^{20}\equiv x \pmod{125}$$
We have
$$125=5^3$$ $$1978^{2}\equiv -1 \pmod 5\Rightarrow 1978^{20}\equiv 1978^{2\cdot10+0}\equiv 1\pmod 5$$
The remainder $x$ should be $26$.
If the remainder $\bmod 5$ is $1$, how to evaluate remainder $\bmod 25$ and combine them to give $x=26$?