I have some with proving by induction. I cannot find a solution for the inductive step: $1^3 + 2^3 + ... + n^3 = (n(n+1)/2)^2$
I already did the induction steps:
Basis: P(1) = $1^3 = (1(1+1)/2)^2$ (This is true)
Inductive step: Assume $P(k) = ((k)(k+1)/2)^2$
To be proven: $((k)(k+1)/2)^2 + (k+1)^3 = ((k+1)(k+2)/2)^2$
My problem is that I do not know how I can put the $ + (k+1)^3$ inside $((k)(k+1)/2)^2$.
Simplifying the left and right part of the statement does not help:
Simplifying the left side: $((k)(k+1)/2)^2 + (k+1)^3 = ((k^2+k)/2)^2 + (k+1)^3 $
Simplifying the right side: $((k+1)(k+2)/2)^2 = ((k^2+3k+2)/2)^2$
So i am left with: $((k^2+k)/2)^2 + (k+1)^3 = ((k^2+3k+2)/2)^2$
That is the same as: $1/4 (k^2+k)^2 + (k+1)^3 = 1/4((k^2+3k+2))^2$
Going further with the left side:$1/4 (k^2+k)^2 + (k+1)^3 = (1/4)(k^4 + 2k^3 + k^2) + k^3+3 k^2+3 k+1$
Going further with the right side: $1/4((k^2+3k+2))^2 = 1/4 (k^4+6 k^3+13 k^2+12 k+4)$
Now I am stuck with: $(1/4)(k^4 + 2k^3 + k^2) + k^3+3 k^2+3 k+1 = 1/4 (k^4+6 k^3+13 k^2+12 k+4)$
Now I am kind of left with garbage. Am I missing something? What do I do wrong? Where can I find a good resources to learn how to solve this issue?