Since $\lfloor \sqrt 2 k \rfloor$ and $\lfloor (2+\sqrt 2) k \rfloor$ are complementary Beatty sequences, they partition the integers and we can find a recurrence relation for their sum. To sum the sequence $\lfloor \sqrt 2 k \rfloor$ we can use a well-known formula to add the consecutive integers
$$
\begin{align}
\sum_1^nk=&1+2+3+..+k+..+n\\
=&\frac{n(n+1)}2
\end{align}
$$
and subtract the terms that should be missed. That is,
$$
\begin{align}
&(1+2+4+..+\lfloor \sqrt 2 k \rfloor+..+\lfloor \sqrt 2 n \rfloor)\\
=&(1+2+3+..+k+..+\lfloor \sqrt 2 n \rfloor)\\
&-(3+6+..+\lfloor (2+\sqrt 2) k \rfloor+...+\lfloor (2+\sqrt 2) {n'} \rfloor)\\
=&(1+2+3+..+k+..+n^*)\\
&-2(1+2+..+k+...+n')\\
&-(1+2+4+..+\lfloor \sqrt 2 k \rfloor+...+\lfloor \sqrt 2 {n'} \rfloor)\\
\end{align}
$$
where $n'=\lfloor (\sqrt 2-1) n \rfloor$ and $n^*=\lfloor \sqrt 2 n \rfloor$, giving us
$$\sum_{k=1}^n\lfloor \sqrt 2 k \rfloor=\frac {n^*(n^*+1)}2 -n'(n'+1)-\sum_{k=1}^{n'} \lfloor \sqrt 2 k \rfloor$$
(Note that $n^*=n'+n$). Since the recurrence relation reduces the number of terms by a factor of $1+\sqrt 2$ on each iteration, we might be able to analyse this relation when $n$ is (near a multiple of) a power of $1+\sqrt2$ and come up with a closed formula for the sum. Let us define some integers for this purpose. Let
$$
\begin{align}
p_m&=\frac{(1+\sqrt 2)^m-(1-\sqrt 2)}{2\sqrt 2}^m\\
\text{and }q_m&=\frac{(1+\sqrt 2)^m+(1-\sqrt 2)}{2}^m
\end{align}
$$
Since
$$
\begin{align}
&p_0=0,\\
&p_1=q_0=q_1=1,\\
&p_m=2p_{m-1}+p_{m-2}\\
\text{and } &q_m=2q_{m-1}+q_{m-2},\\
\end{align}
$$
then $p_m$ and $q_m$ are integers for each integer $m$.
As an example, we will take $n=q_m$ so
$$
\begin{align}
n'&=\lfloor (\sqrt2-1)n\rfloor\\
&=\lfloor \frac 12( \sqrt2-1)(1+\sqrt2)^m+\frac 12(\sqrt2-1)(1-\sqrt2)^m\rfloor\\
&=\lfloor \frac 12(1+\sqrt2)^{m-1}-\frac 12(1+\sqrt2)(1-\sqrt2)^m+\sqrt2(1-\sqrt2)^m\rfloor\\
&=\lfloor \frac 12(1+\sqrt2)^{m-1}+\frac 12(1-\sqrt2)^{m-1}+\sqrt 2(1-\sqrt2)^{m}\rfloor\\
&=q_{m-1}+\lfloor \sqrt 2(1-\sqrt2)^{m}\rfloor\\
&=q_{m-1}+\begin{cases}
1, & \text{if $m=0$} \\
-1, & \text{if $m$ is odd} \\
0, & \text{if $m>1$ and is even}
\end{cases}
\end{align}
$$
The recurrence relation is now amenable to analytical tools because we have formulas that do not involve the floor function. Take $m>1$ for simplicity. Checking both even and odd $m$, we obtain the same recurrence formula in either case so
$$
\begin{align}
\sum_1^{q_m}\lfloor \sqrt2k\rfloor=&\frac{q_m(q_m+1)-q_{m-1}(q_{m-1}+1)}2\\
&+q_{m}q_{m-1}-\sum_1^{q_{m-1}}\lfloor \sqrt2n\rfloor
\end{align}
$$
This allows us to show by induction on $m$ that
$$2\sum_{k=1}^{q_m}\lfloor \sqrt 2 k \rfloor=p_{2m}+q_{m-1}+(-1)^{m-1}$$