2

I need to explain the convergence of $\sum\limits_{k=0}^{\infty}\frac{x^k}{k!}$

So my working out I used the ratio test and I got up to $\sum\limits_{k=0}^{\infty}\frac{a}{k}+1$

Since $\sum\limits_{k=0}^{\infty}\frac{1}{k}+1=0$

Then $\sum\limits_{k=0}^{\infty}\frac{a}{k}+1=0$ and is convergent.

Is this correct?

barak manos
  • 43,109

3 Answers3

2

The ratio of successive terms is

$$\frac{\dfrac{x^{k+1}}{(k+1)!}}{\dfrac{x^k}{k!}}=\frac x{k+1}.$$

For all $k>x$,

$$\frac x{k+1}<\frac k{k+1}=r<1.$$

So the tail of the sumation is dominated by a geometric series of ratio $r<1$, which converges. (If you prefer, $\forall i>0,T_{k+i}<r^iT_k$.)

1

By ratio test

$\forall x\in \mathbb R $

$$\lim_{k\to+\infty}\frac{ \frac{|x|^{k+1}}{(k+1)!} }{ \frac{|x|^k}{k! }}=$$

$$\lim_{k\to+\infty}\frac{|x|}{k+1}=0<1$$

$\implies \forall x\in \mathbb R\;\; \sum \frac{x^k}{k!}$ convergent.

1

There have already been posted solutions that apply the ratio test. I thought, therefore, that it might be instructive to present a solution that applies the root test.

Recalling that $k!\ge (k/2)^{k/2}$, and applying the squeeze theorem reveals

$$\sqrt[k]{\left|\frac{x^k}{k!}\right|}\le \frac{|x|}{\sqrt{k/2}}\to 0\,\,\text{as}\,\,k\to \infty$$

Hence, we see from the root test that the series converges with a radius of convergence $\infty$.

Mark Viola
  • 179,405