I'm interested in the integral $$ I=\int_{0}^\infty\frac{dx}{\left(1+\frac{x^3}{1^3}\right)\left(1+\frac{x^3}{2^3}\right)\left(1+\frac{x^3}{3^3}\right)\ldots}.\tag{1} $$ So far I have been able to reduce this integral to an integral of an elementary function in the hope that it will be more tractable $$ I=\frac{8\pi}{\sqrt{3}}\int_{-\infty}^\infty\frac{e^{ix\sqrt{3}}\ dx}{\left(e^x+e^{-x}+e^{ix\sqrt{3}}\right)^3},\tag{2} $$ using the approach from this question. In that question it was also proved that $$ \int_{-\infty}^\infty\frac{dx}{\left(e^x+e^{-x}+e^{ix\sqrt{3}}\right)^2}=\frac{1}{3},\tag{3} $$ which gives some indication that the integral in the right hand side of $(2)$ might be calculable.
Also note that the integrand in $(1)$ can be expressed as $$ \Gamma(x+1)\left|\Gamma\left(1+e^{\frac{2\pi i}{3}}x\right)\right|^2. $$
Bending the contour of integration in the integral on the RHS of $(2)$ one obtains an alternative representation $$ I=8\pi\int_0^\infty\frac{e^{x\sqrt{3}}~dx}{\left(2\cos x+e^{x\sqrt{3}}\right)^3}.\tag{4} $$
There are some calculable integrals containing the infinite product $\prod\limits_{k=1}^\infty\left(1+\frac{x^3}{k^3}\right)$, e.g. $$ \int_{0}^\infty\frac{\left(1-e^{\pi\sqrt{3}x}\cos\pi x\right)e^{-\frac{2\pi}{\sqrt{3}}x}\ dx}{x\left(1+\frac{x^3}{1^3}\right)\left(1+\frac{x^3}{2^3}\right)\left(1+\frac{x^3}{3^3}\right)\ldots}=0. $$
Q: Is it possible to calculate $(1)$ in closed form?