I want to find the integral: $$\int_0^{\pi}\frac{1}{\ln{(e^{ix}\sin{x})}}dx$$
From $\frac{1}{\ln{(e^{ix}\sin{x})}} = \frac{\ln(\sin{x})}{x^2+\ln^2(\sin{x})}-\frac{x}{x^2+\ln^2(\sin{x})}i$,
therefore $$\int_0^{\pi}\frac{1}{\ln{(e^{ix}\sin{x})}}dx= \int_0^{\pi}\frac{\ln(\sin{x})}{x^2+\ln^2(\sin{x})}dx-i\int_0^{\pi}\frac{x}{x^2+\ln^2(\sin{x})}dx$$.
But it is hard to evaluate these integral.
Are there another method? Thank you.