By symmetry of $\displaystyle \sin{x}$ around $\displaystyle \frac{\pi}{2}$, the domain of integration can be halved, with the integral doubled to compensate.
$\displaystyle I = \pi \int_0^{\frac{\pi}{2}} \frac{1}{1-\cos{\beta}\sin{x}}\,\text{d}x = \pi \int_0^{\frac{\pi}{2}} \frac{1+\cos{\beta}\sin{x}}{1-\cos^2{\beta}\sin^2{x}}\,\text{d}x$
The integral splits into two components, which is easily dealt with termwise.
$\displaystyle I_1 = \pi \int_0^\frac{\pi}{2} \frac{1}{1-\cos^2{\beta}\sin^2{x}}\,\text{d}x = \pi \int_0^\frac{\pi}{2} \frac{\sec^2{x}\, \text{d}x}{1+\sin^2{\beta}\tan^2{x}}$
After the substitution $\displaystyle t=\tan{x}$, the result is $\displaystyle \frac{\pi^2}{2\sin{\beta}}$
$\displaystyle I_2 = \pi \int_0^\frac{\pi}{2} \frac{\cos{\beta}\sin{x}}{1-\cos^2{\beta}\sin^2{x}}\,\text{d}x = \pi \int_0^\frac{\pi}{2} \frac{\cos{\beta}\sin{x}}{\sin^2{\beta} + \cos^2{\beta}\cos^2{x}}\,\text{d}x$
After the substitution $\displaystyle c = \cos{x}$, the result is $\displaystyle \pi \frac{\tan^{-1}{(\cot{\beta})}}{\sin{\beta}}$
Full simplification of the integral depends entirely on the location of the value of $\displaystyle \beta$ on the unit circle. I will leave the rest to you.