2

Given $n+1$ real numbers $a_0,a_1,\cdots, a_{n}$ such that $0<a_0<\cdots<a_n$. Let $P(z)=\sum\limits_{i=0}^n a_i z^i $, where $z\in \mathbb{C}$. How to show that there must be $n$ roots of $P(z)$ in $\mid z\mid<1$? Thank you very much!

Faith
  • 21

0 Answers0