I cannot quite get all the way with just Chebychev, but almost. If any others see a dumb trick I'm missing, please feel free to comment.
Let $X\sim\text{Bin}\left(2m, \displaystyle{1\over 2}\right)$. Then we have that
$$\begin{cases}
P(X=n) = \displaystyle{2m\choose n}{1\over 4^m}\le {2m\choose m}{1\over 4^m} \\
\mu_X = m \\
\sigma_X = \sqrt{m\over 2}
\end{cases}$$
So we can use Chebychev with $k=\sqrt{2}$ to get
$$P(|X-m|\ge\sqrt{m})\le {1\over 2}$$
$$\iff P(|X-m|<\sqrt{m})\ge {1\over 2}$$
This means
$${1\over 2}\le \sum_{n<\sqrt{m}}P(|X-m|=n)<(2\lfloor\sqrt{m}\rfloor+1){2m\choose m}{1\over 4^m}$$
$${4^m\over 4\lfloor\sqrt{m}\rfloor + 2}\le {2m\choose m}$$
which is (almost) the desired result. If we break it up a little more, then in the case $m$ is a perfect square our count is for $\displaystyle\sum_{n=0}^{\sqrt m-1}P(|X-m|=n)$ giving the better bound of
$${1\over 2}\le (2\sqrt{m}-1){2m\choose m}{1\over 4^m}.$$