I read a proof of Burnside's formula and I got stuck in a step.
Burnside's formula
Let $X$ be a finite set, and $G$ be a finite group acting on $X$.
Denote the $G$-orbits of $X$ as $X_1,\dots,X_k$, and
$\operatorname{Fix}_X(g) = \{x \in X \mid g \cdot x = x\}$.
Then $$\bbox[yellow,5px,border:1px solid red]{k=\frac{1}{\lvert G \rvert} \sum\limits_{g \in G} \lvert\operatorname{Fix}_X(g)\rvert.}$$Proof in the link: Since $\operatorname{Fix}_X(g) = \bigcup\limits_{i=1}^k \operatorname{Fix}_{X_i}(g)$, one has $\lvert\operatorname{Fix}_X(g)\rvert = \sum\limits_{i=1}^k \lvert\operatorname{Fix}_{X_i}(g) \rvert$. \begin{align} k &= \sum\limits_{i=1}^k 1 \\ & \stackrel{?}= \sum\limits_{i=1}^k \frac{1}{\lvert G \rvert} \sum\limits_{g \in G} \lvert\operatorname{Fix}_{X_i}(g) \rvert \tag{?}\label{?} \\ &= \frac{1}{\lvert G \rvert} \sum\limits_{g \in G} \sum\limits_{i=1}^k \lvert\operatorname{Fix}_{X_i}(g) \rvert \\ &= \frac{1}{\lvert G \rvert} \sum\limits_{g \in G} \lvert\operatorname{Fix}_{X}(g) \rvert \end{align}
I don't understand step \eqref{?}. For each fixed $G$-orbit $X_i$, why is $\sum\limits_{g \in G} \lvert \operatorname{Fix}_{X_i}(g) \rvert = \lvert G \rvert$?
Thanks!